

ECS Florida, LLC

Geotechnical Engineering Report

Church Site Multi-Family

2466 First Street Fort Myers, Lee County, Florida

ECS Project No. 60:1303-GP

January 29, 2021

"Setting the Standard for Service"

Geotechnical • Construction Materials • Environmental • Facilities

January 29, 2021

Mr. Adam Tucker Zimmer Development Company, LLC **111 Princess Street** Wilmington, NC 28401

ECS Project No. 60:1303-GP

Reference: Geotechnical Engineering Report Church Site Multi-Family 2466 First Street Fort Myers, Lee County, Florida

Dear Mr. Tucker:

ECS Florida, LLC (ECS) has completed the subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above-referenced project. Our services were performed in general accordance with ECS proposal 60:1097-GP (Rev. 1), dated November 9, 2020 and executed November 11, 2020. We previously explored the site and reported on our findings in ECS Report numbers 60:1008, and 60:1089 dated April 24, 2018 and February 28, 2019. This additional exploration was performed due to a change in building footprint and to refine our recommendations based on alternative testing data. This report presents our understanding of the geotechnical aspects of the project along with the results of the field exploration and laboratory testing conducted, and our design and construction recommendations.

It has been our pleasure to be of service to Zimmer Development Company, LLC. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify subsurface conditions assumed for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted.

ECS Florida, LLC Matt Robertson, PE **Geotechnical Engineer** Registered FL No. 87399 MRobertson@ecslimited.com

13850 Treeline Avenue, Suite 4, Fort Myers, Florida 33913 • T: 239-236-7511 • F: 239-236-0972 • www.ecslimited.com ECS Capitol Services, LLPC • ECS Florida, LLC • ECS Midwest, LLC • ECS Mid-Atlantic, LLC • ECS Southeast, LLC • ECS Southwest, LLC

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 PROJECT INFORMATION	2
2.1 Project Location/Current Site Use/Past Site Use	1
2.2 Proposed Construction	2
3.0 FIELD EXPLORATION and laboratory testing	4
3.1 Subsurface Characterization	4
3.2 Groundwater Observations	5
3.3 Laboratory Testing	5
4.0 DESIGN RECOMMENDATIONS	7
4.1 Foundations	7
4.2 Slabs On Grade	8
4.3 Pavement Sections	9
4.4 Stormwater Management Design Parameters	10
5.0 SITE CONSTRUCTION RECOMMENDATIONS	12
5.1 Subgrade Preparation	12
5.1.1 Stripping and Grubbing	12
5.1.2 Subgrade Compaction	12
5.1.3 Site Temporary Dewatering	12
5.2 Earthwork Operations	13
5.2.1 Structural Fill	13
5.3 Foundation Observations	13
6.0 CLOSING	14

APPENDICES

Appendix A – Diagrams

- Site Location Diagram
- Boring Location Diagram
- Subsurface Profile A-A'

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Subsurface Exploration Procedure: Standard Penetration Testing (SPT)
- Boring Logs D-1, E-1, B-1 B-4, CPT-1 CPT-5, A-1 A-4

Appendix C – Laboratory Testing

- Laboratory Test Results Summary D-1 and E-1
- Laboratory Test Results Summary B-1 through B-4
- Laboratory Test Results Summary A-1 through A-4

Appendix D – Pressuremeter Testing

• Pressuremeter Testing Outputs

EXECUTIVE SUMMARY

The following summarizes the main findings of the geotechnical exploration, particularly those that may have a cost impact on the planned development. Further, our foundation recommendations are summarized. Information gleaned from the Executive Summary should not be utilized in lieu of reading the entire geotechnical report.

- The proposed construction includes a 4-story multi-family building with a 5-story precast parking garage and related appurtenances. Based on phone conversations with you, a provided ALTA Survey dated January 7, 2019, and a site plan provided by Zimmer Development, we have assumed the maximum structural loading conditions will consist of column and wall loads on the order of 750 kips and 35 kips per linear foot (klf), respectively.
- It should be noted, two previous subsurface explorations were previously performed and reported on in 2018 and 2019. The 2018 exploration consisted of four SPT soil borings to depths ranging from 25 to 30 feet. The 2019 exploration consisted of four additional SPT borings to a depth on the order of 90 feet and five Cone Penetration Soundings (CPT) to depths ranging from 60 to 65 feet. These previous explorations were performed in the footprint of the proposed development and their approximate locations can be found in the Boring Location Diagram in Appendix A.
- As part of this geotechnical exploration, 2 Standard Penetration Test (SPT) borings and 2 Pressuremeter test soundings were performed within the project site as shown on the Boring Location Diagram in Appendix A. The exploration included 1 boring advanced to a depth of 50 feet below existing ground surface, referenced as D-1, 1 boring advanced to a depth of 25 feet below existing ground surface, referenced as E-1. In addition, the field exploration included 2 pressuremeter tests soundings, referenced as Pmrt-1 and Pmrt-2 and a percolation test in the footprint of the proposed stormwater vault, referenced as P-1.
- The proposed multi-family and garage structures may be supported on conventional shallow foundations consisting of column or strip footings bearing on natural soils with an allowable net bearing capacity of 6,000 psf. Details of the assumed foundation subgrade elevations and loads are contained in the body of the report.

1.0 INTRODUCTION

The purpose of this study was to provide geotechnical information for the design and construction of a 4-story multi-family apartment building, and a 5-story parking garage, and related appurtenances located in Fort Myers, Lee County, Florida.

Our services were provided in accordance with our Proposal No. 60:1097-GP, dated November 9, 2020 as authorized by Adam Tucker on November 11, 2020, which includes our Terms and Conditions of Service between ECS Florida, LLC and Zimmer Development Group, LLC.

This report contains the procedures and results of our subsurface exploration and laboratory testing programs, review of existing site conditions, engineering analyses, and recommendations for the design and construction of the project.

The report includes the following items.

- a. Information on site conditions including surface drainage, geologic information, and special site features.
- b. Description of the field exploration and laboratory tests performed.
- c. Final log of the soil boring and records of the field exploration per the standard practice of geotechnical engineers. A site location plan will be included, and the results of the laboratory tests will be plotted on the final boring logs.
- d. Evaluation of the on-site soil characteristics encountered in the soil borings. Further, we will discuss the suitability of the on-site materials for reuse as engineered fill. We will also include compaction requirements and suitable material guidelines.
- e. Recommendations for foundation support based on provided loads.
- f. Recommendations for soil supported slabs.
- g. Recommendations for fill placement and subgrade preparations.
- h. Discussion of stormwater management design parameters.
- i. Recommendations for additional testing and/or consultation that might be required to complete the geotechnical assessment and related engineering for this project.

2.0 PROJECT INFORMATION

2.1 PROJECT LOCATION/CURRENT SITE USE/PAST SITE USE

The site is located on the southwest corner of First Street and Fowler Street in Fort Myers, Florida, as shown on Figure 2.1.1. Based on the available aerial photography and our field observations, the site has been previously developed as a church.

Figure 2.1.1. Site Location

The site is generally flat with a ground surface elevation of approximately EL. +7 to EL. +8 feet, based on interpolations from the provided ALTA survey, available topographic information, and our site visit. These elevations are approximate and should not be relied upon for design.

ECS reviewed aerial photographs of the subject property and immediate surrounding properties using Google Earth©. The aerial photographs reviewed were dated 1994, 1995, 1999, 2004 through 2008, 2010, 2012 through 2014, 2016, 2017, and 2019. It appears the site was developed prior to 1995 and the majority of the buildings were demolished in 2017. The remaining building was demolished between 2019 and the date of our exploration.

2.2 PROPOSED CONSTRUCTION

Based on the information provided to us, we understand that the project will consist of the design and construction of a 4-story multi-family apartment building, and a 5-story parking garage, and related appurtenances

Although final structural and grading information were not available at the time this report was prepared, we have assumed the maximum structural loading conditions will consist of column and wall loads on the order of 750 kips and 20 kips per linear foot (klf), respectively.

The following information on design values explains our understanding of the structures, based on conversations with your office regarding the planned structural elements and their assumed loads:

SUBJECT	PRELIMINARY DESIGN INFORMATION / EXPECTATIONS
Building Footprint	Approximately 100,000 SF
# of Stories	Four to Five
Usage	Residential
Construction	We anticipate that the proposed structural elements will be concrete
	masonry under wood truss roof
Column Loads ⁽¹⁾	Assumed, 750 kips (Full Dead and Factored Live) maximum
Wall Loads ⁽¹⁾	Assumed, 35 kips per linear foot (klf) maximum
Lowest Finish Floor	Approximately EL. +8.0 ft. NAV88 (assumed)
Elevation ⁽²⁾	
Maximum Fill Level	Two feet above existing grade

Table 2.2.1 Design Values

(1) If assumed loads differ from final structural loads, ECS must be contacted to revise our

settlement calculations and foundation design recommendations to update this report.

(2) Please note that the ground surface elevations were interpolated based on ALTA Survey. The elevations at boring locations are approximate and should not be relied upon for design.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

The field exploration was planned with the objective of characterizing the project site in general geotechnical and geological terms and to evaluate subsequent field and laboratory data to assist in the determination of geotechnical and foundation recommendations.

It should be noted, two previous subsurface explorations were previously performed and reported on in 2018 and 2019. The 2018 exploration consisted of four SPT soil borings to depths ranging from 25 to 30 feet. The 2019 exploration consisted of four additional SPT borings to depths ranging from 80 to 90 feet and five Cone Penetration Soundings (CPT) to depths ranging from 60 to 65 feet. These previous explorations were performed in the footprint of the proposed development and their approximate locations can be found in the Boring Location Diagram in Appendix A.

As part of this geotechnical exploration, borings were performed within the proposed construction site as shown on the Boring Location Diagram. The exploration included 1 SPT borings advanced to a depth of 50 feet below existing ground surface, referenced as D-1 and one SPT boring advanced to a depth of 25 feet, referenced as E-1. In addition, the field exploration included 2 pressuremeter tests, referenced as Pmrt-1 and Pmrt-2 and one percolation test, referenced as P-1.

Boring and pressuremeter test locations were identified in the field by ECS personnel using GPS techniques or by taping from existing site features prior to mobilization of our drilling equipment. The approximate as-drilled boring locations are shown on the Boring Location Diagram in Appendix A. Ground surface elevations noted on our boring logs were interpolated from Google Earth Pro[™]

Standard penetration tests (SPTs) were conducted in the borings at regular intervals in general accordance with ASTM D 1586. Small representative samples were obtained during these tests and were used to classify the soils encountered. The standard penetration resistances obtained to provide a general indication of soil shear strength and compressibility.

Pressuremeter tests (PMTs) were performed in two locations central to the overall site. Readings were taken at various depths from 8 to 24 feet. In the pressuremeter test, a radially expanding cylindrical probe is directly pushed into the soil. After insertion, the probe is expanded incrementally against the side of the hole with pressurized liquid. Each pressure increment is maintained until the readings stabilize. The pressure increments are continued until failure of the soil is reached. The change in diameter of each hole under each pressure increment is measured by the volume change in the center portion of the probe.

By plotting the probe volume versus pressure, a stress-volumetric strain curve is obtained. From this curve, two parameters are obtained for the computation of soil strength and compressibility. The first parameter is the limit pressure, Pl, which is defined as the pressure at which the soil reaches failure (the more asymptotic portion of the graph). A second parameter is the pressuremeter modulus, which is derived from the slope of the stress-volumetric strain curve in the elastic zone. The modulus of pressuremeter modulus is used to estimate settlements of the foundation system and other loaded areas. The limit pressure, Pl, is utilized in bearing capacity calculations. The pressuremeter test data is presented in Appendix B.

3.1 SUBSURFACE CHARACTERIZATION

The subsurface conditions encountered were generally consistent with our previous subsurface explorations in the area and published geological mapping. The table below includes the subsurface stratigraphy and general characteristics. The following sections provide generalized

characterizations of the soil strata encountered during our subsurface exploration. For subsurface information at a specific location, refer to the Boring Logs in Appendix B.

Approximate Depth Range (ft)	Approximate Elevation Range (ft)	Stratum	Description	Ranges of SPT ⁽¹⁾ N-values (bpf)
0-10	EL. +7 to EL3	I	(SP to SP-SM) Fine to Medium SAND, medium dense to very dense	9 to 12
4-13	EL3 to EL6	Ш	(PWR) PARTIALLY WEATHERED LIMESTONE, moderately hard to hard	50/5" to 55/1"
10-50	EL3 to EL47	III	(SM / SC) Fine to Medium Clayey/Silty SAND, loose to very loose	0 to 6

Table 3.1.1 Generalized S	Subsurface Stratigraphy
---------------------------	-------------------------

Notes: (1) Standard Penetration Test

(2) Please note that the ground surface elevations are based on Google Earth©. In addition, the elevations at boring locations are approximate and should not be relied upon for design.

3.2 GROUNDWATER OBSERVATIONS

Water levels were measured in our borings as noted on the soil boring logs in Appendix B. Groundwater was encountered at 4 to 5 feet below ground surface (bgs) in the borings at the time of drilling. Variations in the long-term water table may occur as a result of changes in precipitation, evaporation, tidal influence due to proximity to the river, surface water runoff, construction activities, and other factors. The groundwater will fluctuate seasonally depending upon local rainfall. The rainy season in Florida is normally between June and September, however we note the rainy season during 2020 appears to have extended into November. Based upon our site-specific field data, our review of the USDA Soils Survey of Lee County, the USGS topographic map of the area, published lake level data, the expected regional hydrogeology and our experience in the area, we estimate the seasonal high groundwater levels to be located at a depth of 2 to 3 feet bgs. The contractor should determine actual groundwater conditions prior to construction to evaluate their impact on the work.

3.3 LABORATORY TESTING

The laboratory testing performed by ECS for this project consisted of selected tests performed on samples obtained during our field exploration operations. Classification and soil property tests were performed on representative soil samples obtained from the test borings in order to aid in classifying soils according to the Unified Soil Classification System and to quantify and correlate engineering properties. Laboratory tests performed on selected samples included grain size analysis tests, and moisture content tests. The results of our laboratory testing program is located in Appendix C of this report.

An experienced geotechnical engineer visually classified each soil sample from the test borings on the basis of texture and plasticity in accordance with the Unified Soil Classification System (USCS) and ASTM D-2488 (Description and Identification of Soils-Visual/Manual Procedures). After classification, the geotechnical engineer grouped the various soil types into the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses prior to the soil descriptions on the boring logs. The stratification lines designating the interfaces between earth materials on the boring logs are approximate; in situ, the transitions may be gradual.

4.0 DESIGN RECOMMENDATIONS

4.1 FOUNDATIONS

The recommendations presented in this report are based on the project information provided to us, the results of the soil test borings, laboratory testing, assumed structural loads, and the engineering analyses. Based on the SPT N-values from the borings, these soils were relatively compacted, did not appear to contain deleterious materials, and are suitable for use as a bearing stratum. Considering the results of our field exploration, and our experience with similar projects, it is our judgment that the site is suitable for the proposed development utilizing a shallow foundation system consisting of wall or column footings, provided the subgrade soils have been properly prepared and the recommendations herein are followed. We recommend the foundation design use the following parameters:

Design Parameter	Column Footing	Wall Footing
Net Allowable Bearing Pressure ⁽¹⁾	6,000 psf	6,000 psf
Acceptable Bearing Soil Material	Poorly graded SAND - Stratum I	Poorly graded SAND - Stratum I
Minimum Width	36 inches	24 inches
Minimum Footing Embedment Depth (below slab or finished grade) ⁽²⁾	36 inches	36 inches
Estimated Total Settlement ⁽³⁾	Less than 1 inch	Less than 1 inch
Estimated Differential Settlement ⁽⁴⁾	Less than ½ inch between columns	Less than ½ inch over 50 feet

Notes:

(1) Net allowable bearing pressure is the applied pressure in excess of the surrounding overburden soils above the base of the foundation.

(2) For bearing considerations

(3) Based on assumed structural loads. If final loads are different, ECS must be contacted to update foundation recommendations and settlement calculations.

(4) Based on maximum column/wall loads and variability in borings. Differential settlement can be re- evaluated once the foundation plans are more complete.

Our settlement calculations assumes the soils from the bottom of the footings to a depth of one foot below the bottom of the footings have been compacted prior to placing concrete in the footings when placed on structural fill material, which is the case for this project that will have one foot of fill; if less height of fill material is placed we need to be contacted to reevaluate our settlement analysis. As such, we recommend this zone be compacted to at least 95% of the maximum dry density, as determined by the Modified Proctor Compaction Test (ASTM D-1557), and bearing capacity check for each footing to a depth of five feet underneath the footing with Dynamic Cone Penetrometer (DCP) within each spread footing footprint and every 50 linear feet for continuous footings.:

Potential Undercuts: Most of the soils at the foundation bearing elevation are anticipated to be suitable for support of the proposed structure. If soft or unsuitable soils are observed at the footing bearing elevations, the unsuitable soils should be undercut and removed. Any undercut

should be backfilled with lean concrete (f' $c \ge 1,000$ psi at 28 days) or No. 57 stone, as applicable, up to the original design bottom of footing elevation; the original footing shall be constructed on top of the hardened lean concrete.

4.2 SLABS ON GRADE

Provided subgrades and structural fills are prepared as discussed herein, the proposed floor slabs can be constructed as Ground Supported Slabs (or Slab-On-Grade). Based on the assumed lowest finished floor elevation is within two feet of the existing grade, it appears that the slabs will bear on Stratum I. The following graphic depicts our soil-supported slab recommendations:

- 1. Drainage Layer Thickness: 4 inches
- 2. Drainage Layer Material: GRAVEL (GP, GW), SAND (SP, SW)

Soft or yielding soils may be encountered in some areas. Those soils should be removed and replaced with compacted Structural Fill in accordance with the recommendations included in this report.

Subgrade Modulus: Provided the Structural Fill and Granular Drainage Layer are constructed in accordance with our recommendations, the slab may be designed assuming a modulus of subgrade reaction, k1 of 150 pci (lbs./cu. inch). The modulus of subgrade reaction value is based on a 1 ft by 1 ft plate load test basis.

Vapor Barrier: Before the placement of concrete, a vapor barrier may be placed on top of the granular drainage layer to provide additional protection against moisture penetration through the floor slab. When a vapor barrier is used, special attention should be given to surface curing of the slab to reduce the potential for uneven drying, curling and/or cracking of the slab. Depending on proposed flooring material types, the structural engineer and/or the architect may choose to eliminate the vapor barrier.

Slab Isolation: Soil-supported slabs should be isolated from the foundations and foundationsupported elements of the structure so that differential movement between the foundations and slab will not induce excessive shear and bending stresses in the floor slab. Where the structural configuration prevents the use of a free-floating slab such as in a drop down footing/monolithic slab configuration, the slab should be designed with suitable reinforcement and load transfer devices to preclude overstressing of the slab.

4.3 PAVEMENT SECTIONS

General Recommendations: Our scope of services did not include extensive sampling and LBR testing of existing subgrade or potential sources of imported fill for the specific purpose of a detailed pavement analysis. Instead, we have assumed general pavement design parameters that are considered to be typical for the area soil types. The recommended pavement thicknesses presented in this report section are considered typical and minimum for the assumed parameters in the general site area. We understand that budgetary considerations sometimes warrant thinner pavement sections than those presented. However, the client, the owner, and the project designers should be aware that thinner pavement life. We recommend the following general pavement design sections included in the following Table 4.3.1.

	Asp	halt	Concr	ete
Component	Standard	Heavy	Standard	Heavy
Stabilized Subgrade	12"	12″	N/A	N/A
Base Course (Limerock)	6″	8″	N/A	N/A
Surface Course	1½"	2″	5″	6″
Maximum Joint Control Spacing	-	-	10' x 10'	12' x 12'
Recommended Sawcut Depth	-	-	1 ¼"	1 ½"

Table 4.3.1: Pavement Structures Sections

All pavement subgrades should be prepared in accordance with the recommendations presented in Section 5.1 Subgrade Preparation.

Perform compliance testing for the base course to a depth of one foot at a frequency of one test per 5,000 square feet, or at a minimum of two test locations, whichever is greater.

Effects of Groundwater: One of the most critical influences on the pavement performance in Southwest Florida is the relationship between the pavement subgrade elevation and the seasonal high groundwater level. Many roadways and parking areas have been destroyed as a result of deterioration of the base and the base/surface course bond. Regardless of the type of base selected, we recommend that the seasonal high groundwater and the bottom of the base course be separated by at least 12 inches for crushed concrete and 18 inches for limerock.

Groundwater levels and seasonal high groundwater levels may be affected by the proposed construction which will modify the surface and subsurface hydrology. It may be necessary to provide a permanent subsurface drainage system for some improvements to maintain the recommended separation between the water table and various structural elements in the building and pavement areas.

If construction is begun during wet weather, it is recommended the building and pavement subgrades not be disturbed. Dewatering efforts should begin prior to starting the grading operations. Fill and grading operations should be performed with a minimum disturbance to the surficial soils.

Landscape Drains and Curbing: If needed, where landscaped sections are located adjacent to

parking lots or driveways, we recommend that drains be installed around these landscaped sections to protect the asphalt pavement from excess rainfall and over irrigation. Migration of irrigation water from the landscape areas to the interface between the asphalt and the base usually occurs unless landscape drains are installed. The underdrains or strip drains should be routed to a positive outfall at the pavement area catch basins. It is recommended that curbing around landscaped sections adjacent to parking lots and driveways be constructed with full-depth curb sections. Using extended curb sections which lie directly on top of the final asphalt level, or eliminating curbing entirely, can allow migration of irrigation water from the landscaped areas to the interface between the asphalt and the base. This migration often causes separation of the wearing surface from the base and subsequent rippling and pavement deterioration.

4.4 STORMWATER MANAGEMENT DESIGN PARAMETERS

The following design parameters including hydraulic conductivity values and estimated seasonal high groundwater table have been established using assumed values, field, and laboratory testing:

rusic 4.4.1 Stornwater management Design Farameters					
Design Parameter	Recommended Values (Average of two borings)				
Relevant Boring Logs	P-1 (B-2 previously performed)				
Depth to Base of Surficial Aquifer (feet)	4 to 6				
Fillable Porosity of Surficial in-situ Sands [SP] (%)	25				
Estimated Seasonal High Groundwater Depth	2.5				
Estimated Horizontal Saturated Hydraulic Conductivity of Surficial Sands [SP] (feet per day)	6.8				
Measured Vertical Unsaturated Hydraulic Conductivity of Surficial Sands [SP, SC] (feet per day)	4.5				

 Table 4.4.1 - Stormwater Management Design Parameters

The measured vertical infiltration rate should not be construed to represent the actual stormwater management system exfiltration rate. For stormwater management design calculations, we recommend a factor of safety of 2 be applied to the above vertical infiltration rate value.

It should be noted, the depth to Base of Surficial Aquifer is close to ground surface due to shallow limestone, which may affect the vertical infiltration rates at the bottom of the exfiltration trenches.

The measured vertical infiltration rate should not be construed to represent the actual chamber exfiltration rate. For chamber design calculations, we recommend a factor of safety of 2 be applied to the above vertical infiltration rate value. All fill material used to bring the chambers to final grades should be clean, inorganic, granular soil (sand or gravel) with a fines content of no more than 12 percent. Care should be taken not to overcompact the exfiltration trench bottom during excavation and grading. The soil encountered at the site may be susceptible to overcompaction which can significantly decrease the infiltration capacity of the exfiltration system.

In addition, sediment control measures should be employed during the construction process to keep the stormwater management system from receiving significant amounts of stormwater runoff from the surrounding construction site. This runoff is likely to contain suspended fine-grained soil particles that can impede the infiltration capacity of the chambers if allowed to settle out on the trench bottoms. If dewatering effluent of stormwater runoff from the active construction site is discharged to the trench, we recommend scraping and removal of the fine-grained sediments that may have accumulated on the trench bottom.

5.0 SITE CONSTRUCTION RECOMMENDATIONS

5.1 SUBGRADE PREPARATION

5.1.1 Stripping and Grubbing

Stripping soft or unsuitable material from the foundation areas should also be performed. Unsuitable material consists of soils with more than five percent organics content or more than 12 percent passing the No. 200 sieve. ECS should be called to verify that topsoil and unsuitable surficial materials (including existing pavements) have been completely removed prior to the placement of Structural Fill or construction of structures.

5.1.2 Subgrade Compaction

Upon completion of subgrade documentation, the exposed subgrade within the five-foot expanded foundation limits should be moisture conditioned to within -one and +three percent of the soil's optimum moisture content and be compacted with suitable equipment (roller with minimum weight of 20-tons and width of six feet) to a depth of 12 inches. Subgrade compaction within the expanded building and pavement limits should be to a dry density of at least 95 percent of the Modified Proctor maximum dry density (ASTM D1557). ECS should be called on to document that proper subgrade compaction has been achieved.

The expanded limits of the proposed construction areas should be well defined, including the limits for buildings, pavements, fills, and slopes, etc. Field density testing of subgrades should be performed at frequencies of one test per lift.

5.1.3 Site Temporary Dewatering

Should groundwater control measures become necessary, dewatering methods should be determined by the contractor. We recommend the groundwater control measures, if necessary, remain in place until compaction of the existing soils is completed. The dewatering method should be maintained until backfilling has reached a height of two feet above the groundwater level at the time of construction. The site should be graded to direct surface water runoff from the construction area.

Note that discharge of produced groundwater to surface waters of the state from dewatering operations or other site activities is regulated and requires a permit from the State of Florida Department of Environmental Protection (FDEP). This permit is termed a *Generic Permit for the Discharge of Produced Groundwater From Any Non-Contaminated Site Activity*. If discharge of produced groundwater is anticipated, we recommend sampling and testing of the groundwater early in the site design phase to prevent project delays during construction. ECS can provide the sampling, testing, and professional consulting required to evaluate compliance with the regulations.

5.2 EARTHWORK OPERATIONS

5.2.1 Structural Fill

Import materials should typically be tested prior to being hauled to the site to determine if they meet project specifications. Alternatively, Proctor data from other accredited laboratories can be submitted if the test results are within the last 90 days.

Satisfactory Structural Fill Materials: Materials satisfactory for use as Structural Fill should consist of inorganic soils with the following engineering properties and compaction requirements.

STRUCTURAL FILL INDEX PROPERTIES					
Subject Property					
Foundation	LL < 40, PI<20				
Max. Particle Size	4 inches				
Fines Content (% passing 200 sieve)	Max. 20 %				
Max. organic content	5% by dry weight				

STRUCTURAL FILL COMPACTION REQUIREMENTS				
Subject	Requirement			
Compaction Standard	Modified Proctor, ASTM D1557			
Required Compaction	95% of Max. Dry Density			
Moisture Content	-2 to +3 % points of the soil's optimum value			
Loose Thickness	12 inches prior to compaction			

5.3 FOUNDATION OBSERVATIONS

Protection of Foundation Excavations: Exposure to the environment may weaken the soils at the footing bearing level if the foundation excavations remain open for too long a time. If the bearing soils are softened by surface water intrusion or exposure, the softened soils must be removed from the foundation excavation bottom immediately prior to placement of concrete. If the excavation must remain open overnight, or if rainfall becomes imminent while the bearing soils are exposed, a one to three-inch thick "mud mat" of "lean" concrete should be placed on the bearing soils before the placement of reinforcing steel.

Footing Subgrade Observations: Most of the soils at the foundation bearing elevation are anticipated to be suitable for support of the proposed structures. Therefore, the footings will most likely bear on compacted native soils. It is important for the footings to be tested for density and verified for capacity prior to placement of foundation concrete. If loose or uncompacted soils are observed at the footing bearing elevations, the soils should be recompacted.

6.0 CLOSING

ECS has prepared this report to guide the geotechnical-related design and construction aspects of the project. We performed these services in accordance with the standard of care expected of professionals in the industry performing similar services on projects of like size and complexity at this time in the region. No other representation, expressed or implied, and no warranty or guarantee is included or intended in this report.

The description of the proposed project is based on information provided to ECS by the client. If any of this information is inaccurate or changes, either because of our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted so we can review our recommendations and provide additional or alternate recommendations that reflect the proposed construction.

We recommend that ECS review the project plans and specifications so we can confirm that those plans/specifications are in accordance with the recommendations of this geotechnical report.

Field observations, and quality assurance testing during earthwork and foundation installation are an extension of, and integral to, the geotechnical design. We recommend that ECS be retained to apply our expertise throughout the geotechnical phases of construction, and to provide consultation and recommendation should issues arise.

ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.

APPENDIX A – Diagrams

Site Location Diagram Boring Location Diagram Subsurface Profile

		·
₩ *		
0	_ Iopsoil - SP-SM	
	SP-SM	
	:	
11"		
/ // #		
7		
′5"	PW/R	
	y y	
 2°°S	GP	
000 000 700 700	×	
	۹ ۱	
	SM	
EOB	1	
@20.0'		
	N	1
с С	.54. 8	
GENEF		URFACE SOIL PROFILE Section line
	Church	h Sita
	Zimmer Develop	ment Company
2466	First Street. Fort	Myers, Florida 33901
60:13	03	Date: 01/29/2021

APPENDIX B – Field Operations

Reference Notes for Boring Logs Subsurface Exploration Procedure: Standard Penetration Testing (SPT) Boring Logs D-1, E-1, B-1 - B-4, CPT-1 - CPT-5, A-1 - A-4

REFERENCE NOTES FOR BORING LOGS

MAIERIAL	·			L	RILLING	SAME LING	STIVIDU	IS & AI	BREVIA
	ASPI	IALT	SS ST	Split Spoor	n Sampler	r	PM RD	Pressu Rock F	iremeter T
NA NAM			WS	Wash Sam	nple		RC	Rock C	Core, NX, I
	CON	CRETE	BS	Bulk Samp	le of Cuttir	ngs	REC	Rock S	Sample Re
0 : 0	0.0.4	<i></i>	PA	Power Aug	ler (no sam	nple)	RQD	Rock (Quality De
°,0,0°,	GRA	VEL	HSA	HSA Hollow Stem		n Auger			
	TOPS	SOIL	((*************************************					
2////			DEGIONA		F		SIZE IDE	NTIFICA	TION
	VOID		Boulder	DESIGNATION PARTICLE SIZES			mm) or lorger		
			Cobbles	5	1∠ II 3. in:	ncnes (300 i choc to 12 ir	mm) or la	r larger	
	BRICK		Gravel	Coarse	3/ in	och to 3 inch	es (19 m	m to 75	mm)
Ö Ö	AGGREGATE BASE COURSE		Graven.	Fine	4.75	5 mm to 19 r	nm (No.	4 sieve t	o ¾ inch)
<u>, Voo</u>	700		Sand: Coarse		2 00 mm to 4 75 mm (No		5 mm (No	No. 10 to No. 4 sieve	
	GW	WELL-GRADED GRAVEL	Medium		0.425 mm to 2.00 mm)0 mm (N	(No. 40 to No. 10 sit	
		gravel-sand mixtures, little or no fines	Fine		0.074 mm to 0.425 mm		125 mm (n (No. 200 to No. 40	
S°, O	GP	POORLY-GRADED GRAVEL	Silt & Clay ("Fines")		<0.074 mm (smaller tha		aller thar	an a No. 200 sieve)	
যুৰণক	GM	SILTY GRAVEL							
Y62	0	gravel-sand-silt mixtures		COHESIVE	E SILTS &	CLAYS			
14° B	GC	CLAYEY GRAVEL	UNCO	NFINED				REL	ATIVE
5192		gravel-sand-clay mixtures	СОМРІ	RESSIVE	SPT⁵	CONSISTER			DUNT
<u>م</u>	SW	WELL-GRADED SAND	STREN	GTH, QP⁴	(BPF)	(COHESI)	/E)	Trace	
		gravelly sand, little or no fines	<().25	<3	Very So	oft	\\/itb	
	SP	POORLY-GRADED SAND	0.25	- <0.50	3-4	Soft		vviui	
	см		0.50	- <1.00	5-8	FIRM		Adjec	tive Silty")
	SIVI	sand-silt mixtures	1.00	· <2.00	9-15	Suii			,,,
/ /:	sc	CLAYEY SAND	2.00	- <4.00 8.00	16 - 30 31 - 50	Very Su Hard			
:/ / /		sand-clay mixtures	4.00	- 8.00 3.00	>50	Verv Ha	rd		
	ML	SILT							WA
		non-plastic to medium plasticity	GRAVE	LS. SANDS	& NON-C	OHESIVE S	ILTS	∇	WL (First
	МН			SPT ⁵		DENSITY		Ē	
		nign plasticity						Į	WL (Com
	CI			~ 5			N		MI (See
	CL	LEAN CLAY low to medium plasticity		<5 5 - 10	,				VVI LOPAS
	CL CH	LEAN CLAY low to medium plasticity FAT CLAY	Ę 1	<5 5 - 10 1 - 30	М	Loose	<u>م</u>	Ē	WL (Sea:
	СL CH	LEAN CLAY low to medium plasticity FAT CLAY high plasticity	ب 1 3	<5 5 - 10 1 - 30 1 - 50	Me	Loose edium Dense	е	⊥ Ţ V	WL (Stab
 7 / / / 7 / / / 7 / / /	CL CH OL	LEAN CLAY low to medium plasticity FAT CLAY high plasticity ORGANIC SILT or CLAY	؛ 1 3	<5 5 - 10 1 - 30 1 - 50 >50	Me	Loose Edium Dense Dense Very Dense	e		WL (Stab
[[// /] [// /] [// /] [// /]	CL CH OL	LEAN CLAY low to medium plasticity FAT CLAY high plasticity ORGANIC SILT or CLAY non-plastic to low plasticity	؛ 1 3	<5 5 - 10 1 - 30 1 - 50 >50	Me	Loose edium Dens Dense Very Dense	e		WL (Stab
	CL CH OL OH	LEAN CLAY low to medium plasticity FAT CLAY high plasticity ORGANIC SILT or CLAY non-plastic to low plasticity ORGANIC SILT or CLAY	1 3	<5 5 - 10 1 - 30 1 - 50 >50	Me	Loose edium Dens Dense Very Dense FIL	e		WL (Stab
	CL CH OL OH	LEAN CLAY low to medium plasticity FAT CLAY high plasticity ORGANIC SILT or CLAY non-plastic to low plasticity ORGANIC SILT or CLAY high plasticity	13	<5 5 - 10 1 - 30 1 - 50 >50	Me	Loose edium Dense Dense Very Dense FIL	e L AND R		WL (Stab
	CL CH OL OH PT	LEAN CLAY low to medium plasticity FAT CLAY high plasticity ORGANIC SILT or CLAY non-plastic to low plasticity ORGANIC SILT or CLAY high plasticity PEAT highly organic soils	4 1 3	<5 5 - 10 1 - 30 1 - 50 >50	Me	Loose edium Dense Dense Very Dense FIL	e L AND R		WL (Stab

ABBREVIATIONS

RQD	Rock Quality Designation %	
REC	Rock Sample Recovery %	
RC	Rock Core, NX, BX, AX	
RD	Rock Bit Drilling	
РМ	Pressuremeter Test	

		PARTICLE SIZE IDENTIFICATION					
DESIGNATIC	N	PARTICLE SIZES					
Boulders		12 inches (300 mm) or larger					
Cobbles		3 inches to 12 inches (75 mm to 300 mm)					
Gravel:	Coarse	3/4 inch to 3 inches (19 mm to 75 mm)					
	Fine	4.75 mm to 19 mm (No. 4 sieve to ¾ inch)					
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)					
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)					
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)					
Silt & Clay	r ("Fines")	<0.074 mm (smaller than a No. 200 sieve)					

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
Trace	<5	<u><</u> 5
With	10 - 20	10 - 25
Adjective (ex: "Silty")	25 - 45	30 - 45

7	WL (First Encountered)	
-	WL (Completion)	

WL (Seasonal High Water)

ROCK

WL (Stabilized)

¹Classifications and symbols per ASTM D 2488-17 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler

required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf). SPT correlations per 7.4.2 Method B and need to be corrected if using an auto hammer.

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-17 Note 14.

⁸Percentages are estimated to the nearest 5% per ASTM D 2488-17.

SUBSURFACE EXPLORATION PROCEDURE: STANDARD PENETRATION TESTING (SPT) ASTM D 1586 Split-Barrel Sampling

Standard Penetration Testing, or **SPT**, is the most frequently used subsurface exploration test performed worldwide. This test provides samples for identification purposes, as well as a measure of penetration resistance, or N-value. The N-Value, or blow counts, when corrected and correlated, can approximate engineering properties of soils used for geotechnical design and engineering purposes.

SPT Procedure:

- Involves driving a hollow tube (split-spoon) into the ground by dropping a 140-lb hammer a height of 30-inches at desired depth
- Recording the number of hammer blows required to drive split-spoon a distance of 12 inches (in 3 or 4 Increments of 6 inches each)
- Auger is advanced* and an additional SPT is performed
- One SPT test is typically performed for every two to five feet
- Obtain two-inch diameter soil sample

*Drilling Methods May Vary— The predominant drilling methods used for SPT are open hole fluid rotary drilling and hollow-stem auger drilling.

CLIENT Zimmer	Develo	opmen	t Comp	anv		PROJECT NO.: 60:1303			BORING I D-1	NO.:	SHEET:
PROJEC	CT NAN	ИЕ:				DRI	LLER/CONT	RACTO	DR:		
Church	Site CATIOI	N:				ECS	•				
2466 Fii	st Stree	et, Fort	Myers	, Floric	la 33901						LOSS OF CIRCULATION
NORTH 840117.	IING: . 4		1	E4 70	ASTING: STATIC 10063.9	N:		SI 8.	JRFACE E 0	LEVATION:	BOTTOM OF CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATER	RIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Content Liquid Limit X
	S-1	SS	24	24	Topsoil Thickness[2.00"] Asphalt Thickness[0.50"]			:		4-4-6-5 (10)	[FINES CONTENT] %
	S-2	SS	24	24	(SP) FINE TO MEDIUM SAND, brown, moist, loose to mediu	gray to um dens	e		-	5-6-6-12 (12)	Ø ₁₂
	S-3	SS	24	20	(SP-SM) FINE TO MEDIUM SA SILT, reddish brown, moist to	ND WIT wet,	Ή		3-	4-4-5-4 (9)	
	S-4	SS	24	24	(SP) FINE TO MEDIUM SAND, wet, loose to medium dense	light ta	n, Is			5-5-6-6 (11)	⊗ ₁₁
-	S-5	SS	24	24	significant shell fragments					3-5-5-4 (10)	₱10
10					- (SM) SILTY SAND, light gray, v	vet, very	/		-2-	1.1.1/0/	
	S-6	SS	18	6	loose to loose, highly weathe limestone, contains shell and fragments	ered I rock			-7 - -7 - - - -	1-1-WOH (1)	¢,
20	S-7	SS	18	18					-12- - - - -	2-1-2 (3)	⊗3
	S-8	SS	18	5	-				-17-	1-2-3 (5)	⊗₅
30-	S-9	SS	18	12					-22-	2-1-2 (3)	₿3
	 тн	HE STRA			CONTINUED ON NEXT	UNDARY I	INES BETWE	EN SOU	L TYPES IN	I-SITU THE TE	ANSITION MAY BE GRADUAI
∠ v	VL (Firs	st Enco	ounter	ed)	4.50	SORING S	TARTED	Dec 1	6 2020		
▼ v	VL (Cor	npleti	on)		L	BORING					
V V	VL (Sea	isonal	High V	Vater)	(ED:			HAMME	KIYPE: Auto
V V	VL (Sta	bilized)		1	ruck	IN I:	JDY		DRILLING	G METHOD: mud-rotary
					GEOTECH	ΝΙCΔΙ	BORFHC	IFI	06		

CLIENT	: Develo	nmen	Comn	anv			PROJECT N	0.:	B	BORING	NO.:	SHEET:	
PROJEC	CT NAN	1E:	comp	any			DRILLER/C	ONTRA	CTO	R:		2012	EUS
Church	Site						ECS						~
2466 Fi	rst Stree	v: et, Fort	Myers	, Florid	a 33901							LOSS OF CIRCULATION	<u>>100</u> />
NORTH 840117	HNG: .4			EA 70	STING: 0063.9	STATION:	ION: SURFACE ELE			LEVATION:	BOTTOM OF CASING		
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water Conten X	t Liquid Limit
-					(SM) SILTY SAND, light loose to loose, highly limestone, contains sh	gray, wet, weathered	t, very d			-			
	S-10	SS	18	18	fragments (SC) CLAYEY FINE TO N		AND,				2-1-WOH (1)	₿1	
35-					gray, wet, very loose		,			-27			
	S-11	SS	18	18				////		-	WOH-1-WOH (1)	₿ <mark>1</mark>	
40										-32			
45-	S-12	SS	18	18						-37 	1-WOH-WOH (0)	80	
	S-13	SS	18	18						- - - -42 -	WOH-WOH- WOH (0)	8₀	
	S-14		19	19							2-2-2	8	
55				10		NG AT 55.0	FT	<u>/:/:/:</u>		-47 	(4)	-4	
- 60- -										-52 - - -			
	TH VL (Firs	it Enco	ounter	ed)	NES REPRESENT THE APPROXII 4.50		NC STARTER	IWEEN	SUIL	IYPES. IN		ANSITION MAY BE GRADU	AL
T v	VL (Cor	npleti	on)	/			NG STAKTEL). De	:C 16	2020	CAVE IN I		
V V	▼ WL (Seasonal High Water)						PLETED:	De	ec 16	2020	HAMME	R TYPE: Auto	
V V	VL (Sta	bilized)	,		EQUI Truck	PMENT:	LC DL)gge Y	ED BY:	DRILLING	METHOD: mud-rotary	
					GEO	DTECHNIC	CAL BORE	HOLI	E LC	DG	I		

CLIENT Zimmer	CLIENT: immer Development Company						PROJECT N 60:1303	0.:	BORING NO.: E-1			SHEET: 1 of 1	
PROJEC	T NAN	1E:					DRILLER/CC	ONTRAC	TOF	- R:			- LUS
SITE LO	Site Cation	۷:					ECS						
2466 Fir	st Stre	et, Fort	Myers	, Florid	a 33901	CTATION			<u></u>			LOSS OF CIRCU	
840068.	ING: 3			EA 70	STING: 0244.9	STATION:			SU 7.0	RFACE E	LEVATION:	BOTTOM OF (CASING
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	F MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	Plastic Limit Water X	Content Liquid Limit ←
	S-1	SS	24	10	Topsoil Thickness[1.50 (SP-SM) FINE TO MED)"] IUM SAND) WITH				3-4-6-10 (10)		
-	S-2	SS	24	13	SILT, contains roots, da medium dense (SP-SM) FINE TO MEDI	IUM SANE	, moist,				4-4-5-7 (9)	Øg.	
5-	S-3	SS	17	12	SILT, reddish brown to (WR) PARTIALLY WEAT	gray, moi HERED LII	st, loose/ MESTONE			2-	4-5-50/5" (55/11")		\$55/11"
-	S-4	SS	4	2	SAMPLED AS GRAVEL moist to wet, very der	WITH SAN se [Weatl	ID, gray, hered	Ξ	z	-	50/4" (50/4")		⊗ _{50/4"}
	S-5	SS	5	_4	LIMESTONE]					-	50/5" (50/5")		Ø _{50/5"}
10-										-3-			
	S-6	SS	18	2	(GP) GRAVEL WITH SA significant rock fragme	ND, conta ents, gray,	ins wet,	200,00 00,00 10,00,00			3-3-3 (6)	86	
15					loose, highly weathere	ed limesto	ne			-8- - - - -			
-	S-7	SS	18	14	saturated, very loose		ND, gray,			-	1-1-1 (2)	⊗₂	
20					END OF DRILLIN	IG AT 20.0	FT			-13 - - - - - - - - - - - - - - - - - - -			
										- - - - - - - - - - - - - - - - - - -			
	Tł	HE STRA	ATIFICA	L TION LI	NES REPRESENT THE APPROXIM	MATE BOUNI	DARY LINES BET	TWEEN S	OIL .	TYPES. IN	-SITU THE TR	I RANSITION MAY BE G	RADUAL
V V	/L (Firs	t Enco	unter	ed)	6.50	BOR	ING STARTED	: Dec	: 16	2020	CAVE IN	DEPTH:	
V	/L (Cor	npleti	on)			BOR	ING	Dec	: 16	2020	HAMME	R TYPE: Auto	
	/L (Sea	isonal	High V	Vater)		CON EQU	IPLETED: IPMENT:	LOG	GGE	ED BY:	DRILLING	6 METHOD: mud-ro	itary
	rr (sta	unized)		GFC	Trucl	CAL BORF)G			

CLIENT	Job #: BORING #			SHEET						
Framework Group, LLC	60:1008 ARCHITECT-ENGINE	B-0 ⁷	1	1 OF 1	Eße					
Ft. Myers Methodist Apartments	Paul Benvie									
	1 at Street and Faular Street, Ft. Music, Lee County, Fl.									
NORTHING EASTING STATION	Jounty, FL			ROCK QUALITY DE RQD%	SIGNATION & RECOVERY REC% ———					
DESCRIPTION OF MATERIAL	PLASTIC V	VATER LIQUID								
				LIMIT% CO	NTENT% LIMIT%					
	LOSS OF CIRCULAT	"9/S/	Q CTANDAG	DENETRATION						
0	, brown to tan, moist,		6 8 15	23-⊗						
S-2 SS 24 24 medium dense (ML) SANDY SILT, brownis	sh tan, wet, stiff to nents		17 8 4 5	9'						
		Ţ	4 3 2							
5 - 5-3 SS 24 24 (ML) SANDY SILT contain	s rock fragments		4 2 2	6						
S-4 SS 24 24 medium stiff tan, saturated	e rook nagmone,		3 7 8	10 😓 1						
			5 4 2 1	6						
		-5								
					1 1 1 1 1 1					
			1 1 1	⊗-2						
(ML/CL) SANDY CLAYEY saturated,firm	SILT, grayish tan,									
		-10								
			5		1 1 1 1 1 1					
			3 2	5						
CL/ML) SANDY SILTY CL	AY, grayish tan,									
		-15								
					1 1 1 1 1 1					
			3 2	5						
		-20			1 1 1 1 1 1					
S-9 SS 18 18			2 3	5-⊗						
			· I	1 1						
		ETWEEN SOIL TY	PES IN	SITU THE TRANSITION M						
₩ 4 WS WD BORING STAT	RTED 04/03/18		CAVE	E IN DEPTH						
₩ WL(SHW) ₩ WL(ACR) BORING COM	PLETED 04/03/18		HAMMER TYPE Manual							
₩ WL RIG ATV	FOREMAN	FOREMAN Bre DRILLING METHOD								

CLIENT		Job #: BORING #			SHEET		
Framework Group, LLC		60:1008	В-02	2	1 OF 1	Efec	
Ft. Myers Methodist Apartn	nents	Paul Benvie					
SITE LOCATION					-O- CALIBRATED P	ENETROMETER TONS/FT ²	
1st Street and Fowler Stree	et, Ft. Myers, Lee Co	ounty, FL			ROCK QUALITY DES RQD%	SIGNATION & RECOVERY REC% ———	
	IPTION OF MATERIAL	ENGLISH	UNITS	\top	PLASTIC V	VATER LIQUID	
		LOSS OF CIRCULATIO			LIMIT% CO	NTENT% LIMIT%	
			ER LE	"9/S/	⊗ STANDAF		
SAW SAW			WAT ELE	BLO	BL	OWS/FT	
S-1 SS 24 24 (SP	soil Depth [6.00"]) SAND, contains roots, b	rown to tan, moist,		6 5	11-×	1 1 1 1 1 1	
	lium dense) SILTY SAND, tan, satur lium dense	rated, loose to		3 7 5			
	lum dense		₽ ₽ ₽	4 3 6	3 Q I		
5				7 9 12	16-⊗		
) SAND WITH ROCK FRA vnish, saturated, medium	AGMENTS, tan dense		15 17	26		
			-5	7 6 7	13		
				6 5	×		
(ML) SANDY SILT WITH ROO saturated, soft to mediur	CK FRAGMENTS, m stiff					
			-10	2			
S-6 SS 18 18				1	⊗-2 ' 25.9-€		
						· · ·	
			-15	3			
20 - 5-7 SS 18 18				5 4	9-8		
S-8 SS 18 18				4 3	5-⊗ .''.		
25 ENI	OF BORING @ 25'			2			
					1 I 1 I	1 1 1 1 1 1	
30 -					1 1	1 1 1 1 1 1	
THE STRATIFICATION LINES	REPRESENT THE APPROXIMAT	TE BOUNDARY LINES BE	TWEEN SOIL TYP	PES. IN-	I-SITU THE TRANSITION MAY BE GRADUAL.		
¥ wL 3.5 ws⊡ w	D BORING STARTE	ED 04/03/18		CAVE	VE IN DEPTH		
₩ WL(SHW) ₩ WL(ACR)		ETED 04/03/18		HAMM	MER TYPE Manual		
₩L	RIG ATV	FOREMAN B	re	DRILI	LING METHOD		

CLIENT	Job #:	BORING #	SHEET		
Framework Group, LLC	60:1008 ARCHITECT-ENGINEE	B-03	1 OF 1	Eße	
Ft. Myers Methodist Apartments	Paul Benvie				
1 at Street and Fourier Street Ft M			-O- CALIBRATED PENETROMETER TONS/FT ²		
	STATION		ROCK QUALITY DES RQD%	SIGNATION & RECOVERY REC% ———	
	MATERIAL ENGLIS		PLASTIC V LIMIT% CO	VATER LIQUID NTENT% LIMIT%	
	LOSS OF CIRCULATI	SS6" NO			
L L L SURFACE ELEVAT L L L L L L L L L L L L L	ON 3.2	MATE ELEV	STANDAF BL	RD PENETRATION OWS/FT	
S-1 SS 24 24 (SP) SAND, b saturated, ver	rown and to tan, moist to y loose to loose	- 3 - 3 2	6		
			⊗-3		
5 - S-3 SS 24 24 (ML) Sandy S	ilt		≪-3 '		
S-4 SS 24 24			11 8	1 1 1 1 1 1 1 1	
s-5 SS 24 24			5-⊗ 16.3-● .		
10 - (ML) SANDY	SILT WITH GRAVEL, brownish	3			
		-10	5-⊗ ' '		
15					
S-7 SS 18 18		-15 2	⊗-3 '		
20 (CL/ML) SAN fragments, br	DY SILTY CLAY, contains rock ownish tan, saturated, very soft to			1 1 1 1 1 1 1 1 1	
		WOH WOK WOH	>−0		
S-9 SS 18 18			⊗-4 ¦ 17-∦ ¦ _ ∆	-25 •-36.4	
	UND (U) 20	· · · ·	1 1		
THE STRATIFICATION LINES REPRESEN	THE APPROXIMATE BOUNDARY LINES BE	TWEEN SOIL TYPES. IN-	SITU THE TRANSITION M	IAY BE GRADUAL.	
⊈ wL 6 ws⊡ wD⊡	BORING STARTED 04/03/18	CAVE	CAVE IN DEPTH		
₩ WL(SHW) ₩ WL(ACR)	BORING COMPLETED 04/03/18	НАММ	HAMMER TYPE Manual		
	RIG ATV FOREMAN	Bre DRILL	ING METHOD		

CLIENT							Job #: BORING #				SHEET			
	WOr NAME	k Gr	oup	<u>, LL</u>	С		60:100 ARCHITECT-EN	08 IGINEER	В	-04		1 OF 1	20	0
Ft. Mye	ers	Meth	nod	ist A	partments		Paul Ben	vie						
SITE LOCA	HON		_									-O- CALIBRATED F	PENETROMETER	R TONS/FT ²
1st Stre	<u>eet</u>	and	Fo	WIER EASTIN	Street, Ft. My	Vers, Lee Cou Station	unty, FL					ROCK QUALITY DE RQD%	SIGNATION & R - REC% —	ECOVERY
			Î		DESCRIPTION OF M	IATERIAL	E	NGLISH UN	IITS			PLASTIC	WATER	LIQUID
Ê	ġ	ΥPE	DIST. (I	(IN)	BOTTOM OF CASIN	g 🗩	LOSS OF CIRC			N (FT)		LIMIT% CC	ONTENT%	
ЭЕРТН (F	SAMPLE	SAMPLE -	SAMPLE	RECOVER	SURFACE ELEVATIO	ОN			NATER L	ELEVATIO	SLOWS/6'	⊗ STANDA B	RD PENETRATIC	N
	5-1	ss	24	24	Topsoil Depth (SP) SAND, co	[6.00"] ontains roots, bro	own to tan, m	ioist		Ш	6 7 6	13-⊗	· · ·	
	_				to wet, medium	n dense					8			
]									¥		7		1	1
5	S-2	ss	24	24							7 7 10	14-8		-
	S-3	ss	24	24							5 5 7	12,⊗		
	S-4	ss	24	24	(SP) SAND, co saturated, loos	ontains rock frag se	ments, tan,				9 4 3 4	7-8		
10					(ML) Sandy Sil (SP-SM) SANI	lt with rock fragn D WITH SILT, br	nents ownish tan,				5			1
					saturated, very	loose								
													1	-
15	S-5	ss	18	18							1 1 1	⊗–2 25.5–		
					(SM) SILTY SA saturated, very	AND, trace clay, / loose to loose	brownish tan	ı,						-
	S-6	ss	18	18							3 3	7-⊗ '	1	
20											4			
											2			
25	S-7	SS	18	18	(CL/ML) SAND	Y SILTY CLAY.	brownish tar	ı, ##	HH		1 2	⊗-3		:
_					saturated, soft									
	S-8	ss	18	18							2 1 1	⊗-2 ¦ 19 % ∠	_25 ●-36.8	1
30		1			END OF BORI	NG @ 30'		[l			1 1	1
	77.1.5	OTO	TIC				DOUNDADY			TVO	0.111			
⊥ 및 wL 4.	.0	STRA	ATIFI(BORING STARTED	ATE BOUNDARY LINES BETWEEN SOIL TYPES. IN TED 04/03/18 CAV				CAVE	IN-SITU THE TRANSITION MAY BE GRADUAL.		
WL(SHV	W)		Ţ	WL(AC	R)	BORING COMPLE	TED 04/03/	/18			HAMMER TYPE Manual			
<u>₩</u> <u>₩</u>						RIG ATV	FORE	MAN Bre			DRIL	LING METHOD		

CLIENT	Job #:	BORING #		SHEET	
Framework Group, LLC PROJECT NAME	60:1008 ARCHITECT-ENGINEER	B-1		1 OF 1	ECQ
Ft. Myers Methodist Apartments					
1st Street and Fowler Street. Ft. Myers, Lee C	ounty. Fl				ENETROMETER TONS/FT
NORTHING EASTING STATION	<u>, , , , , , , , , , , , , , , , , , , </u>			ROCK QUALITY DES RQD%	SIGNATION & RECOVERY REC% ———
	ENGLISH			PLASTIC V	ATER LIQUID
	LOSS OF CIRCULATIO				
		ER LE	NS/6"		
	approx.)	MAT ELEV	BLO	BL	OWS/FT
S-1 SS 24 24 CSP SAND, contains roots, 1 SS 24 24 CSP SAND, contains roots, 1 medium dense	prown to tan, moist,		6 8 15 17	23-⊗	
S-2 SS 24 24 medium defise (ML) SANDY SILT, brownish medium stiff with rock fragm	i tan, wet, stiff to ents	5	8 4 5	9	
			4 3 2		
5 - 5-3 SS 24 24	rock fragments	E	4 2 2	6-8	
S-4 SS 24 24 medium stiff tan, saturated,	rook nagmonto,	E.	3 7 8	10-8	
			5 4 2	6	
			1		
		E			
S-6 SS 18 18			1 1 1	Ş-2	
15 (ML/CL) SANDY CLAYEY S	ILT, grayish tan,				
		-10			
S-7 SS 18 18			5 3 5 2	5-🔗	
CL/ML) SANDY SILTY CLA	Y, grayish tan,				
		-15			
			3 5 2	5-🛇	
		-20	2		
S-9 SS 18 18			2 5 3	5-&	
		 -			<u> </u>
		WEEN SOIL TYP	ES. IN-SI	TU THE TRANSITION M	
₩L 4 WS WD BORING START	ED 04/03/18		CAVE	N DEPTH	
₩ WL(SHW) ¥ WL(ACR) BORING COMP	LETED 04/03/18		HAMME	ER TYPE Manual	
₩ WL RIG ATV	FOREMAN BI	e	DRILLI	NG METHOD	

CLIENT					Job #:		BORING #		SHEET	-		
Framewor PROJECT NAMI	<u>k Gı</u>	oup) <u>, LL</u>	С	ARCHI	0:1008 TECT-ENGINEER	B	2	1 OF	1	2	CC
Ft. Myers	Met	hodi	ist A	partments					[~
1 of Street	and	For	Nor	Street Et Myore La	County	C 1				ATED PI	ENETROME	FER TONS/FT ²
NORTHING	anu		EASTIN	IG STATION	e County,				ROCK QUAL RQD%	ITY DES	REC%	RECOVERY
		2	<u>-</u>	DESCRIPTION OF MATERIAL		ENGLISH	UNITS 0	Ē	PLASTIC	V COI	ATER	LIQUID
(FT)	е туре	E DIST.	ERY (IN	BOTTOM OF CASING	LOSS	OF CIRCULATION		10N (F	×		•	<u>\</u>
DEPTH	SAMPLE	SAMPLE	RECOVI	SURFACE ELEVATION 9 fe	et (appro>	(.)	WATER	ELEVAT BLOWS	⊗ s⊺	ANDAR	D PENETRA OWS/FT	TION
0	SS	24	24	Topsoil Depth [6.00"] (SP) SAND, contains roo medium dense	ots, brown to	tan, moist,		6 6 5 3	11-🔗			
	SS	24	24	(SM) SILTY SAND, tan, medium dense	saturated, lo	oose to		7 5 4	9-&			
5 - S-3	SS	24	24					5 6 7 9	16-&			
	SS	24	24	(SP) SAND WITH ROCH brownish, saturated, me	K FRAGMEN dium dense	ITS, tan		12 15 17 9		26-8)	
	SS	24	24					7 6 7 6	13 Ø			
10				(ML) SANDY SILT WITH	I ROCK FRA	AGMENTS,		5				
								2				
15	55	18	18					1	⊗-2	25.9-		
	SS	18	18				-1		9-🔗			
	SS	18	18				-1	5 4 3	5-⊗			
25				END OF BORING @ 25	,			2				
								0				
30 —								-				
	E STR	ATIFIC	ATION	LINES REPRESENT THE APPRO	XIMATE BOUN	DARY LINES BET	WEEN SOIL 1	YPES. IN-	SITU THE TRANS	ITION M	AY BE GRAD	UAL.
₩ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		•	ws 🗌	WD BORING S		04/03/18		CAVE				
₩ ₩ WL(ACR) BORING COMPLETED Ψ WL RIG ATV					OMPLETED	U4/U3/18	<u>م</u>		UNG METHOD	ual		
WL RIG ATV FOREMAN Bre DRILLING METHOD												

CLIENT	Job #:	BORING #	SHEET	
Framework Group, LLC PROJECT NAME	60:1008 ARCHITECT-ENGINE	B-3	1 OF 1	ECS
Ft. Myers Methodist Apartments				TV TV
1st Street and Fewler Street Et Myers	oo County El		CALIBRATED P	PENETROMETER TONS/FT ²
NORTHING EASTING STATIO			ROCK QUALITY DES RQD%	SIGNATION & RECOVERY REC% ———
	L ENGLI		PLASTIC V	WATER LIQUID
	LOSS OF CIRCULA		× C0	
H H H H H H H H H H H H H H H H H H H	feet (approx.)	WATER ELEVAT BLOWS	⊗ STANDAF BL	RD PENETRATION OWS/FT
0 S-1 SS 24 24 (SP) SAND, brown a	nd to tan, moist to	5 3	6-🔗	
S-2 SS 24 24	to loose		⊗-3	
(ML) Sandy Silt				
5 - S-3 SS 24 24			⊗-3	
S-4 SS 24 24		6 5 5	11-8	
	•	- 13 2 3 3	5-⊗ 16.3-●	
10 (ML) SANDY SILT W tan, saturated, soft a	ITH GRAVEL, brownish nd medium stiff	-5		
		3 2	5-⊗	
S-7 SS 18 18			⊗-3	
20 (CL/ML) SANDY SIL	TY CLAY, contains rock	2		
soft				
			 ≫−0	
				-26 -26 4
30	30'			● 30.4
THE STRATIFICATION LINES REPRESENT THE AP	PROXIMATE BOUNDARY LINES I	BETWEEN SOIL TYPES. IN	-SITU THE TRANSITION M	IAY BE GRADUAL.
	IG STARTED 04/03/18	CAV	'E IN DEPTH	
₩ WL(SHW) ₩ WL(ACR) BORIN	IG COMPLETED 04/03/18	HAM	IMER TYPE Manual	
₩ WL RIG A	TV FOREMAN	Bre DRII	LING METHOD	

CLIENT	Job #:	BORING #	SHEET	
Framework Group, LLC	60:10 ARCHITECT-ER	D8 B-4	1 OF 1	ECC
Ft. Myers Methodist Apartments				
1st Street and Fowler Street, Ft, My	ers, Lee County, El			PENETROMETER TONO/FT
NORTHING	STATION		ROCK QUALITY DE RQD%	ESIGNATION & RECOVERY - REC%
	ATERIAL E		PLASTIC	WATER LIQUID
(L) U U U U U U U U U U U U U U U U U U U	LOSS OF CIR			
H I I I I I I SURFACE ELEVATION	o∾ 6 feet (approx.)	WATER ELEVA	STANDA B	RD PENETRATION LOWS/FT
S-1 SS 24 24 (SP) SAND, co to wet, mediur	[6.00"] ontains roots, brown to tan, n n dense	noist 5	6 7 6 8 8	
5 - S-2 SS 24 24			7 7 7 14-8	
S-3 SS 24 24			5 5 7 12+8	
S-4 SS 24 24 Saturated, loos	ontains rock fragments, tan, e		$\begin{bmatrix} 9 \\ 4 \\ 3 \\ 4 \end{bmatrix}$	
10 (ML) Sandy Si	t with rock fragments D WITH SILT, brownish <mark>tan,</mark>		5	
saturated, very	loose	-5		
S-5 SS 18 18			1 1 1 ⊗-2 25.5-€	
(SM) SILTY S. saturated, very	AND, tra <mark>ce c</mark> lay, brownish ta v loose to loo <mark>se</mark>			
			3	
S-6 SS 18 18			$\begin{bmatrix} 3\\ 3\\ 4 \end{bmatrix} 7 - \bigotimes$	
		-15		
			2	
25	Y SILTY CLAY, brownish ta	n, ####	$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \times \begin{bmatrix} -3 \\ -3 \end{bmatrix}$	
saturated, soft		-20		
S-8 SS 18 18			$\begin{vmatrix} 2\\1\\1\\1\end{vmatrix} \bigcirc -2 \qquad 19 \cancel{1} \cancel{2} \cancel{2} \cancel{2} \cancel{2} \cancel{2} \cancel{2} \cancel{2} 2$	∑ −25 ● −36.8
│	NG @ 30'			
THE STRATIFICATION LINES REPRESENT	THE APPROXIMATE BOUNDARY L	NES BETWEEN SOIL TYP	ES. IN-SITU THE TRANSITION	MAY BE GRADUAL.
⊒ wL 4.0 ws□ wD□	BORING STARTED 04/03	/18	CAVE IN DEPTH	
₩ WL(SHW) ₩ WL(ACR)	BORING COMPLETED 04/03	/18	HAMMER TYPE Manual	
<u>₩</u> WL	RIG ATV FORE	MAN Bre	DRILLING METHOD	

CLIENT						Job #:	BORING #		SHEET	
Framew	vork (Grou	p, LL	C		60:1089	A	<u>-1</u>	1 OF 3	200
PROJECT N/	er Ri	/er [Distri	ct (FKA Fort M	R		-			
Methodi	ist Ap	artn	nents)	•					
						o / =			-O- CALIBRATED F	PENETROMETER TONS/FT ²
NORTHING	Stree	t and	EASTIN	st Street, Fort	Myers, Lee (STATION	County, FL			ROCK QUALITY DE	SIGNATION & RECOVERY
									RQD%	- REC%
		Î		DESCRIPTION OF M	ATERIAL	ENGLIS	H UNITS	_	PLASTIC	WATER LIQUID
E S	o, ∐ ∠B	DIST. (N) X	BOTTOM OF CASING	G 🗩	LOSS OF CIRCULAT		N (FT	×	
TH (F	IPLE 7	IPLE [OVEF		7 foot (2)		ER LE	VATIC WS/6'	⊗ STANDA	RD PENETRATION
DEP	SAM SAM	SAM	REC		n rieel (a		WAT	ELE BLO	BI	_OWS/FT
	-1 SS	24	24	(SP) SAND, da wet, medium d	ark brown to ligł ense	nt brown, moist to		5	15-⊗	
s	-2 ss	24	24					11 12	23-8	
			-					12		
5 — S	-3 SS	24	24					565	11	
							Ť	5		
	5-4 55	24	24				E) 5 4	9-00	
	-5 55	24	24					6	15-00	
10								8		
								5		
s	-6 SS	18	18	(SP) SAND WI gray, wet, med	TH ROCK FRA lium dense to lo	GMENTS, light		633	6-⊗	
15								5		
								10		
	7 99	10	19					8	14-00	
20	-7 33	10						8		
				FRAGMENTS,	light brown, we	et, medium dense				
				to very loose				15		
s	-8 SS	18	18				_	1	⊗-2	
25										
								20		
	-9 55	18	18				—	3	5	
30								3		
	I	I	I	1				ר ר		
	0		ws		BORING STARTE	D 02/11/10		CA		
WL(SHW	/)	<u> </u>	WL(AC	CR)	BORING COMPI F	TED 02/12/19		на	MMER TYPE Auto	
Image: Second secon					FOREMAN	Anthonv			otarv	
L = ···-									1110010	,

CLIENT							Job #:		BORIN	G #		SHEET		
Framework Group, LLC 300 #: BORII PROJECT NAME 60:1089										A-1		2 OF 3	5	20
Fort My	PROJECT NAME Fort Myer River District (FKA Fort Myers Methodist Apartments)													5
Method SITE LOCAT	list . FION	Apa	rtm	ents)									
Fowler	Str	oot -	and	Fire	t Street Fort	Myore Loo (County	FI				-O- CALIBRATED	PENETROMET	TER TONS/FT ²
NORTHING	011			EASTIN		STATION	Sounty,					ROCK QUALITY D	ESIGNATION 8	RECOVERY
													REC 76	
			(N)	î	DESCRIPTION OF M	IATERIAL		ENGLISH	UNITS	ST (F		PLASTIC LIMIT% C	WATER ONTENT%	LIQUID LIMIT%
Ê	ÖN .	ITYPE	DIST	ERY (I	BOTTOM OF CASIN	G 📕	LOSS OF	CIRCULATION	N 2008	ION (F	6"	×	•	Δ
ЕРТН (AMPLE	AMPLE	AMPLE	ECOVE	SURFACE ELEVATI	on 7 feet (a	pprox.)			'ATER _EVAT	/SMO-		RD PENETRA	TION
	ŝ	Ś	Ś		(SM) SANDY	SILT WITH SHE	LL			≥ ⊡ 	B			
					FRAGMENTS to verv loose	, light brown, we	et, mediur	m dense						
											MOU			
	-10	SS	6	6	(CH/CL) SANI	DY CLAY, green	, wet, stif	f to firm		_	WOH			
35 —										-				
										7 00				
										-30				
	44		10	10						-	3			
40	-11	55	18	18						_	3	5-00		
										-				
										_				
s-	-12	ss	18	18							3 2 5	7-🔗		
45										_	5			
	12	~~	10	10						-	1			
50	-13		10	10							2	4		
										-45				
										_	2			
S	-14	ss	18	18						_	3 2 4	6-🔗		
55														
										_ 				
	-15	SS	18	18						_	2	⊗–3		
60			.0							-	2			
								СС		ON NEXT	Γ PAGE.			
	THE	STRA	ATIFIC		LINES REPRESENT	THE APPROXIMAT	E BOUNDA	RY LINES BET	WEEN S		ES. IN-	SITU THE TRANSITION	MAY BE GRAD	JAL.
⊈ w⊾ 6.0	00			ws	WD	BORING STARTE	D 02	2/11/19			CAVE	E IN DEPTH		
WL(SHW) WL(ACR) BORING COMPLETED 02/12/19						НАМІ	MER TYPE Auto							
Image: WL RIG ATV FOREMAN Anthony							DRILI	LING METHOD Mud F	lotary					

CLIENT					Job #:	BORIN	IG #		SH	EET	
Framework	<u>Gr</u> ou	ip, LL	.C		<u>60:1089</u>		<u>A</u> -1		3 C	DF <u>3</u>	
Fort Myer F	River I	Distri	ct (FKA Fort M	yers	ARCHITECT-ENGINEE	R					
Methodist A	Apartr	nents	s) `	,							
SITE LOCATION									-O- CAL	BRATED P	ENETROMETER TONS/FT2
Fowler Stre	et an	d Fire	st Street, Fort M	<u>/Iyers, Lee (</u>	County, FL				ROCK QI	JALITY DE	SIGNATION & RECOVERY
									RQD	% - — -	REC%
		<u> </u>	DESCRIPTION OF MA	TERIAL	ENGLIS			1	PLASTIC	v	
	PE	Í E		_		_	ELS (FT)		LIMIT%	co	NTENT% LIMIT%
E NO		/ERY	BOTTOM OF CASING		LOSS OF CIRCULATI	on <u>>1007</u> >	R LEV	.9/S	~		•
EPTH	AMPL	ECO	SURFACE ELEVATION	7 feet (a	pprox.)		/ATEF	row:	8	STANDAF	RD PENETRATION OWS/FT
о о — — — — —	<u>v v</u>	<u>~</u>	(CH/CL) SANDY	/ CLAY, green	, wet, stiff to firm		<u> </u>	B			
_				-							
							-	3			
	SS 18	18					_	1 3	⊗–4		
							-				
	00 10	10						4	-		
70	33 10		_				_	3	5-0.		
							_				
							_				
	SS 18	18				VIA	_	3 3	7-⊗		
75		-	-					4			
							70				
							_				
	SS 18	18	(SP-SC) SAND	WITH CLAY, li	ig <mark>ht g</mark> ray, wet,		_	76	15⊣	X	
80							_	9			
							_				
							<u>-</u> -75				
				tarov wat da	noo to yon		-	22			53
S-20 \$	SS 18	18	Dense	it gray, wei, de	inse to very		-	25 28			\rightarrow
85							-				
						F	 				
			-					25			
90 - S-21 S	SS 18	18						19 23			42∺⊗
			END OF BORIN	IG @ 90.00'							
							-				
THF	STRATIF	ICATIO	N LINES REPRESENT T	HE APPROXIMATE	E BOUNDARY LINES BI	ETWEEN S		ES. IN-	SITU THE TR		IAY BE GRADUAL.
 ⊒ w∟ 6.00		ws) WD []	BORING STARTE	02/11/19			CAVE			
₩ WL(SHW)				TED 02/12/19			НАМ		uto		
ער אין				FOREMAN /	Anthony		DRIL	LING METHO	D Mud Ro	otary	
L											

CLIENT							Job #:	BORING #		SHEET		
Frame	ewor	k Gı	our	o. Ll	С		60:1089	A-2	2	1 OF 3	50	
PROJECT	NAME	Rive	er D)istria	- ct (FKA Fort My	ers	ARCHITECT-ENGINEER	र .				58
Metho	dist	Ара	irtm	ents)	010						
SITE LOC	ATION										PENETROMET	ER TONS/FT ²
Fowle	r Str	reet	and	l Firs	<u>t Street, Fort M</u>	<u>yers, Lee (</u>	County, FL					DECOVEDY
NORTHIN	G			EASTIN	IG ST	ATION				RQD%	- REC% -	RECOVERY
				1								
			(IN)	Î	DESCRIPTION OF MAT	ERIAL	ENGLISH			PLASTIC LIMIT% CO	WATER DNTENT%	LIQUID LIMIT%
Ē	NO	IYPI	DIST	RY (I	BOTTOM OF CASING		LOSS OF CIRCULATIO			×	•	Δ
) HT	APLE	APLE	APLE	COVE	SURFACE ELEVATION	7 feet (a	nnrox)	TER I)/S/(⊗ STANDA	RD PENETRA	ΓΙΟΝ
DEF	SAN	SAN	SAN	REC			pp:0x.)	A T	BLC	В	LOWS/FT	
	S-1	ss	24	24	(SP) SAND, dark wet. verv loose to	: brown to ligh o loose	nt brown, moist to		22	⊗-4		
								<u> </u>	2	$\overline{\}$		
	S-2	SS	24	24					2 4	10		
	02	00	21					_	6 6			
5	S-3	SS	24	24					6 5	10		
	0-0	00	27	27					5 5			
	S-4	22	24	24					2 3	7-8		
	0-4	00	24	24					4 4			
	S-5	22	24	24					3 4	7		
10	3-5	33	24	24					3 6			
10												
_												
					(SP) SAND WITH		GMENTS light		3			
15	S-6	SS	18	18	gray, wet, loose				3 2	5-⊗		
_								-10				
_									4			
20	S-7	SS	18	18				_	3 4	7-8		
20												
_								-				
_								-15				
					(SM) SILTY SAN				3			
	S-8	SS	18	18	FRAGMENTS, lig	ght gray, wet,	very loose to	_	1 1	⊗-2		
25 -					loose							
_												
								-20				
								_	1			
	S-9	SS	18	18				_	3 3	6-🛠		
30 -												
							CC	ONTINUED C	N NEXT	PAGE.		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE					E BOUNDARY LINES BE	TWEEN SOIL TY	PES. IN-	SITU THE TRANSITION	MAY BE GRADU	JAL.		
⊈ w⊾ 6	6.00			ws	WD 🗌 🛛 B	ORING STARTE	D 02/12/19		CAVE	E IN DEPTH		
					TED 02/12/19		НАМ	MER TYPE Auto				
Image: state Image: state Image: state Image: state Image: state RIG ATV FOREMAN Anthony DRILLING METHOD Mud Rotary												

CLIENT					Job #:	BO	RING #		SHEET				
Framework O	<u>Group</u>	<u>, LL</u>			60:1089 ARCHITECT-ENG) INEER	A-2	2	2 OF 3	5	2	GQ	
Methodist Ap	ver L bartm	ents	t (FKA Fort I))	viyers									TV
SITE LOCATION			,						CALIBRAT	ED PEN	ETROMET	FER TONS	/FT ²
Fowler Stree	t and	FASTIN	t Street, Fort	Myers, Lee (County, FL				ROCK QUALIT	Y DESIG	NATION 8	RECOVE	RY
		2/10/11		onthon					RQD% -		REC%		
	Î		DESCRIPTION OF N	IATERIAL	EN	GLISH UNIT	S		PLASTIC	WA	TER	LIQU	UID
F O Z	DIST. (KY (IN)	BOTTOM OF CASIN	IG 📕	LOSS OF CIRCU					CONT	ENT%		Τ% Δ
PTH (F	MPLE I	COVEF	SURFACE ELEVATI	o∾ 7 feet (a	pprox.)		TER L	9/SMC	⊗ sta	NDARD	PENETRA	TION	
SAN DEF	SAN	REC						BLO		BLOV	VS/FT	:	
			FRAGMENTS	, light gray, wet,	very loose to								
			loose										
	6 18	18	(CH/CL) SANI	DY CLAY, green	, wet, soft to st	iff		2	⊗ -2				
35							F	K					
							-30						
	6 18	18						4	⊗-4				
40								3					
							-35						
	5 18	18						2 1	⊗-3				
45								2					
							- 10						
							E-40						
S-13 SS	s 18	18						wон wон	⊗-3				
								3					
				•			-45						
	10	10						3	5-00				
55								3					
							-50						
								2					
60 - S-15 SS	18	18						2 3	⊗-c				
							СС		ON	NEXT	ſ PAG	ε.	
THE ST	RATIFI		I LINES REPRESENT	THE APPROXIMAT	E BOUNDARY LINE	S BETWEE	N SOIL TY	PES. IN-	SITU THE TRANSIT	ION MAY	' BE GRADI	JAL.	
⊈ wL 6.00		ws	WD	BORING STARTE	D 02/12/1	9		CAVE	E IN DEPTH				
₩ WL(SHW)	▼ -	WL(AC	:R)	BORING COMPLE	TED 02/12/1	9		НАМ	MER TYPE Auto				
					AN Antho	ny	DRIL	LING METHOD MU	ud Rota	ry			

CLIENT							Job #:		BORIN	IG #		SHEET		
Framev PROJECT N	ramework Group, LLC ^{OJECT NAME} ort Myer River District (EKA Fort Myers							1089 CT-ENGINEER	<u> </u>	A-2		3 OF 3	- 2	GQ
Fort My Method	/er F list /	≺ive Ana	er D rtm	listric	ct (FKA Fort N	lyers								
SITE LOCAT	TION				/								D PENETROMET	ER TONS/FT ²
Fowler	Stre	eet a	anç	l Firs	st Street, Fort	Myers, Lee (County,	FL						RECOVERY
NORTHING				EASTIN	NG	STATION						RQD%	REC%	
			Ê	_	DESCRIPTION OF N	IATERIAL		ENGLISH	UNITS	s C		PLASTIC	WATER	
Ê	Ö	TYPE	DIST.	RY (IN	BOTTOM OF CASIN	G 📕	LOSS OF	CIRCULATIO	N 2008	LEVEL: ON (FT		X	•	
ДЕРТН (SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATION	⊃N 7 feet (a	pprox.)			WATER	BLOWS/	⊗ STAN	DARD PENETRA BLOWS/FT	TION
					(CH/CL) SANI	DY CLAY, green	, wet, sof	ft to stiff						
	_									_	7			
65 S	6-16	SS	18	18						_	3 7	10-⊗		
										_				
										-60				
										_	2			
S	5-17	SS	18	18							2 3	5		
										_				
										65				
	-18	99	18	18	(SP-SC) SANI	O WITH CLAY A	ND SHE	LL			5	15-00		
	5-10	33	10	10	FRAGMENTS	, gray, wet, m <mark>ed</mark>	lium dens	se (7			
										_				
										70 				
	5-19	ss	18	18							6 7	13-⊗		
80	_				END OF BOR	ING @ 80.00'			-		6			
										- 				
85										_				
										_ _ 				
										_				
90 —										_				
										_				
	THE	STRA	TIFI	CATION	LINES REPRESENT		E BOUNDA	RY LINES BET	WEEN S	SOIL TYP	ES. IN	-SITU THE TRANSITIO	N MAY BE GRADU	JAL.
₩ WL 6.0	00			WS	WD	BORING STARTE	D 02	2/12/19			CAV	E IN DEPTH		
Weight with the second					TED 02	2/12/19			HAM	MER TYPE Auto				
₩ WL RIG ATV FOREMAN Anthony DRILLING METHOD Mud Rotary						Rotary								

CLIENT							Job #:		BORIN	G #		SHEET		
Frame	mework Group, LLC 60:									A-3		3 OF 3	_ 1	60
Fort M	lyer dist	Riv∉ Ana	er D artm	istric ents	ct (FKA Fort N	lyers								
SITE LOC	ATION			00	/								PENETROME	TER TONS/FT ²
Fowle	r Str	eet	and	Firs	t Street, Fort	Myers, Lee (<u>County,</u>	FL					SIGNATION	
NORTHIN	G			EASTIN		STATION						RQD%	- REC%	
			- Î		DESCRIPTION OF M	IATERIAL		ENGLISH	UNITS	" <u> </u>		PLASTIC	WATER	LIQUID
Ê	Ö	ТҮРЕ	DIST.	RY (IN	BOTTOM OF CASIN	G 🗩	LOSS OF	CIRCULATIO	N 2007	-EVELS		×	- ONTENT%	
ОЕРТН (Г	SAMPLE	SAMPLE	SAMPLE	RECOVE	SURFACE ELEVATIO	o∾ 7 feet (a	pprox.)			VATER L	3LOWS/6	⊗ STANE	ARD PENETRA BLOWS/FT	TION
	0)	0)	05							<u>-</u>				
										_	7			
65 -	S-16	SS	18	18						-	7 3 8	11-🔗		
										-				
										_	2			
70 —	S-17	SS	18	18							2 3	5-8		
										_				
_										65				
											3			
	S-18	SS	18	18						_	4 4	8-🛇		
										- 				
										70 				
	S-10	99	18	18	(SP-SC) SANE	WITH CLAY A		<		-	4	7		
80	3-15	33	10		FRAGMENTS	, dark brown, we NG @ 80.00'	et, loose				3			
										_				
										75 				
85 —										- 				
									E	80 				
										_				
90 —										- 				
-										_				
	THE	E STR/	ATIFIC		I LINES REPRESENT	THE APPROXIMAT	E BOUNDAR	Y LINES BET	WEEN S	SOIL TYP	ES. IN-	SITU THE TRANSITION	N MAY BE GRAD	UAL.
<u>⊒</u> w∟ 6	6.50			ws	WD	BORING STARTE	D 02	/13/19			CAVE	E IN DEPTH		
₩_ WL(S	HW)		Ţ	WL(AC	R)	BORING COMPLE	TED 02	/13/19			HAM	MER TYPE Auto		
Image: WL RIG ATV FOREMAN Anthony DRILLING METHOD Mud Rotary														

CLIENT	Job #:	BORING #	SHEET	
Framework Group, LLC	60:1089 ARCHITECT-ENGINE	A-4	2 OF 3	- ECc
Fort Myer River District (FKA Fort Myers Methodist Apartments)				
SITE LOCATION			-O- CALIBRATED	PENETROMETER TONS/FT ²
Fowler Street and First Street, Fort Myers,	Lee County, FL		ROCK QUALITY D	ESIGNATION & RECOVERY
			RQD%	- REC%
	ENGLIS	sh UNITS ທີ	PLASTIC	WATER LIQUID
	LOSS OF CIRCULAT			
	eet (approx.)	WATER ELEVATI		ARD PENETRATION 3LOWS/FT
CH/CL) SANDY CLAY to loose	, green, wet, very loose			
		-25		
S-10 SS 18 18			3 0-4	
			2	
		-30		
			4 3 7−⊗	
40			4	
		-35		
			1	
			1	
		-40		
			2 1	
		-45		
S-14 SS 18 18			$\begin{array}{c c}3\\4\\3\end{array}$ 7- \bigotimes	
		-50		
S-15 SS 18 18			1 🛇 -3	
		_	CONTINUED C	ON NEXT PAGE.
THE STRATIFICATION LINES REPRESENT THE APPR	OXIMATE BOUNDARY LINES E	ETWEEN SOIL TYPE	S. IN-SITU THE TRANSITION	MAY BE GRADUAL.
₽ WL 6.50 WS WD BORING	STARTED 02/11/19		CAVE IN DEPTH	
₩ WL(SHW) ₩ WL(ACR) BORING	COMPLETED 02/11/19		HAMMER TYPE Auto	
꽃 WL RIG AT	V FOREMAN	Anthony	DRILLING METHOD Mud F	{otary

Project Name: Fort Myer River District (FKA Fort Myers Methodist Apartments) Location: 1st St. and Fowler St., Fort Myers, FL Ground EL (ft): 7 Date: 2/20/2019

Sounding #: CPT-1

Project Name: Fort Myer River District (FKA Fort Myers Methodist Apartments) Location: 1st St. and Fowler St., Fort Myers, FL Ground EL (ft): 7 Date: 2/20/2019

Sounding #: CPT-2

Project Name: Fort Myer River District (FKA Fort Myers Methodist Apartments) Sounding #: CPT-3 Location: 1st St. and Fowler St., Fort Myers, FL Ground EL (ft):7 Date: 2/20/2019

Project Name: Fort Myer River District (FKA Fort Myers Methodist Apartments) Sound Location: 1st St. and Fowler St., Fort Myers, FL Ground EL (ft): 7 Date: 2/20/2019

Sounding #: CPT-4

Project Name: Fort Myer River District (FKA Fort Myers Methodist Apartments) Sounding Location: 1st St. and Fowler St., Fort Myers, FL Ground EL (ft): 7 Date: 2/20/2019

Sounding #: CPT-5

APPENDIX C – Laboratory Testing

Laboratory Test Results Summary D-1 and E-1 Laboratory Test Results Summary B-1 through B-4 Laboratory Test Results Summary A-1 through A-4

Laboratory Testing Summary								
Sample Source	Sample Number	Depth (feet below ground surface)	Percent Passing No. 200 Sieve	Natural Moisture	Liquid Limit	Plastic Limit	Plasticity Index	USCS
D-1	S-2	2 to 4	8.5%	16.8%				SP-SM
D-1	S-6	13.5 to 15	43.0%	68.1%				SM
D-1	S-10	33.5 to 35	34.2%	26.7%				SM
D-1	S-11	2 to 4	30.1%	35.5%				SC
E-1	S-3	4 to 6	19.9%	18.1%				SC
Project No):	60: 1303						
Project Name: Church Site Multi-Family								
PM	JY							
PE	MR							

				Labor	atory	Testi	ng Su	immary				Page 1 of
Sample Source	Sample Number	Depth (feet)	MC1 (%)	Soil Type2	Atter LL	berg Lir PL	nits ³ Pl	Percent Passing No. 200 Sieve ⁴	Moisture - De Maximum Density (pcf)	Optimum Moisture (%)	CBR Value6	Other
B-01												
P 02	S-5	8.00 - 10.00	23.1	ML				72.6				
D-02	S-6	13.50 - 15.00	25.9	ML				56.1				
B-03												
	S-5	8.00 - 10.00	16.3	ML				19.5				
	6.0	29 50 20 00	26.4		25	47	0					
B-04	5-9	20.00 - 30.00	30.4		25		ð					
2 0 1	S-5	13.50 - 15.00	25.5	SP-SM				17.9				
	S-8	28.50 - 30.00	36.8	CL/ML	25	19	6					
Notes: Definitions:	1. ASTM D 2216, 2. A MC: Moisture Conter	ASTM D 2487, 3. ASTM E nt, Soil Type: USCS (Unifi	0 4318, 4. A ed Soil Clas	STM D 1140, 5 sification Syste	. See test re m), LL: Liqu	eports for tes iid Limit, PL:	st method, 6 Plastic Lim	 See test reports nit, PI: Plasticity Inc 	for test method lex, CBR: California E	Bearing Ratio, OC: C	organic Content (A	STM D 2974)
Project No.	1008									EC	S TEXAS. L	LP
Project Name:	Ft. Myers Mo	ethodist Apartments								2120	Denton Drive, Su	ite 105-104
PW:	Kurt Brown									Phor	n, 1X 78758 ne: (512) 837-8005	
FE:		pril 26, 2019								Fax:	(512) 837-8221	

				Laboratory T	esting	l Sun	nmar	У				Page 1 of 1
					Atterberg Limits ³			Percent	Moisture - Density (Corr.) ⁵			
Sample Source	Sample Depth Number (feet)	MC1 Soil (%) Type2	LL	PL	PI	Passing No. 200 Sieve4	Maximum Density (pcf)	Optimum Moisture (%)	CBR Value6	Other		
A-3										,		
	S-8	23.5 - 25.0	19.9	SC				13.7				
	S-14	53.5 - 55.0	41.2	SC				17.3				
A-4												
	S-6	13.5 - 15.0	18.5	SC				20.7				
	S-20	83.5 - 85.0	28.4	SP-SC				9.1				
Notes: Definitions:	1. ASTM D 2216, 2. MC: Moisture Conte	. ASTM D 2487, 3. AST ent, Soil Type: USCS (I	ו M D 4318, 4 Jnified Soil C	. AS I M D 1140, 5. See test repo classification System), LL: Liquid I	rts for test me _imit, PL: Pla	etnod, 6. S stic Limit, I	ee test re PI: Plastic	ports for test m sity Index, CBR	etnod : California Bearing	g Ratio, OC: Orga	anic Content (AS	STM D 2974)
Project No.	60:1089									FCS		
Project Name:	Fort Myer F	River District (FKA	Fort Myers	s Methodist Apartments)						13850 T	reeline Avenue.	Suite 4
PM:	Veronica D	e Freitas								Fort My	ers, FL 33913	
PE:	Jose Gome	Z								Phone: Fax: (23	(239) 236-7511 9) 236-0972	
Printed On:	Wednesday, February 27, 2019											

APPENDIX D – PressuremeterTesting

Pressuremeter Test Outputs

Engineering Consulting Services Fort Myers, Florida Automated Pressuremeter Summary

Date: 1/26/2021

Project Number: Project Engineer: MWR Project Name: Church Site

Principal Engineer: DS

Location	Test	Depth (ft)	Test EL. (ft)	USCS	Pf (tsf)	Pl (tsf)	Ep (tsf)	Er	N-SPT	Ep/Pl	Ep/N	PI/Pf
PM-1	1	8	0	-	9.50	13.00	134.55	-	7	10.35	19.22	1.37
PM-2	1	18	-10	-	6.00	7.00	68.18	-	3	9.74	22.73	1.17
PM-2	1	24	-16	-	3.20	4.00	44.91	-	5	11.23	8.98	1.25

	Membrane	Calibration	Volume Calibration				
Pre	ssure (kPa)	Volume (cm^3)	Pressure (kPa)	Volume (cm^3)			
8	3.289912	0.569571	203.479649	24.698677			
2	7.884249	5.851049	400.176642	29.125799			
43	1.072745	10.744183	588.960538	31.688869			
52	2.753984	15.947993	798.092398	33.397583			
64	4.435223	20.401004	1004.963374	34.717952			
73	3.855577	25.682482	1199.399482	36.11599			
84	4.406373	30.34261	1417.574882	37.048016			
89	9.681772	35.416971	1616.53276	37.824704			
90	6.464426	40.361885	1821.142851	38.679061			
10	2.493453	45.151461	2014.448516	39.455749			
10	5.884781	50.277601					
10	8.145666	55.067177					
1	14.92832	60.141538					
11	.6.812391	64.827556					
11	.9.826905	69.953696					
12	5.102303	74.820941					
12	9.247259	79.765854					
1	.33.0154	84.736657					

Pressure (tsf)	Volume (in^3)
0.953	0.208
1.958	0.496
3.048	0.785
4.170	1.051
5.309	1.311
6.421	1.595
7.333	1.879
8.372	2.174
9.252	2.464
9.804	2.708
10.405	3.000
10.885	3.289
11.317	3.572
11.705	3.879
11.937	4.168
12.222	4.454
12.405	4.751
12.614	5.043

Poisson Ratio	0.333
Pressure 1	1.958
Pressure 2	6.421
Volume 1	0.496
Volume 2	1.595
E_p (tsf)	134.548
Limit Pressure (tsf)	13.000
Failure Pressure (tsf)	7.000
N_SPT	7

Poisson Ratio	0.333
Pressure 1	1.465
Pressure 2	4.751
Volume 1	2.124
Volume 2	3.978
E_p (tsf)	68.183
Limit Pressure (tsf)	7.00
Failure Pressure (tsf)	5.00
N SPT	3

Pressure (tsf)	Volume (in^3)
0.231	0.220
0.197	0.400
0.243	0.527
0.272	0.694
0.310	0.817
0.338	0.957
0.303	1.122
0.320	1.273
0.372	1.399
0.409	1.555
0.415	1.710
0.426	1.848
0.507	2.009
0.564	2.159
0.606	2.315
0.684	2.434
0.737	2.606
0.838	2.728
0.925	2.897
1.023	3.039
1.153	3.179
1.274	3.349
1.410	3.475
1.531	3.625
1.725	3.778
1.882	3.927
2.056	4.070
2.241	4.204
2.418	4.348
2.597	4.488
2.795	4.639
2.996	4.825
3.179	4.925
3.405	5.074
3.581	5.219

Poisson Ratio	0.333
Pressure 1	1.023
Pressure 2	2.795
Volume 1	3.039
Volume 2	4.639
E_p (tsf)	44.909
Limit Pressure (tsf)	4.00
Failure Pressure (tsf)	3.00
N_SPT	5